If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-5z^2-2z+5=0
a = -5; b = -2; c = +5;
Δ = b2-4ac
Δ = -22-4·(-5)·5
Δ = 104
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{104}=\sqrt{4*26}=\sqrt{4}*\sqrt{26}=2\sqrt{26}$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-2\sqrt{26}}{2*-5}=\frac{2-2\sqrt{26}}{-10} $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+2\sqrt{26}}{2*-5}=\frac{2+2\sqrt{26}}{-10} $
| a/2+1=21 | | -21=2x-5x+6 | | 2(4x+9)=-40+26 | | y=-3(-1.5)-6 | | 86=2w+30+2w | | 4/3(b)=6 | | 3p+5=2p+13 | | 3x−3=4x+1 | | 8(x-1)-3=5x+3(-2+x) | | 14+7n+15=10n-4 | | 5.4-14.96=2.63x+4.8+2.4 | | 4/3(a)=-6 | | –15g+14=–13g | | 4(x+3=8x+2 | | 5/7=8/9p | | 19x=2260 | | 2x+5=9.5 | | 5.8z+12.9=2.7z+53.6 | | 5x+11=1x | | 11+z=3 | | 2c+5(c−5)= | | -10n+3{8+8n}=-6{n-4} | | 12=3(b-6) | | 5x+11=x−5 | | -15=5(3w-10)-5w | | 4x=2548 | | -5y=-6y-5 | | 2x-3+x=x+7 | | -8f+9+5=-10f-6 | | 1.7x+50=0.7x+140 | | -3t=2t-5 | | m+(m+31.2)+(m+57)=196.2 |